ECE 218 SIGNALS AND SYSTEMS LABORATORY 11

*Do following transformations in matlab

Laplace Transforms

1. f(t) = 1

•
$$F(s) = \frac{1}{s}$$

2. $f(t) = e^{-at}$

•
$$F(s) = \frac{1}{s+a}$$

3. f(t) = u(t)

•
$$F(s) = \frac{1}{s}$$

4. $f(t) = \delta(t)$

•
$$F(s) = 1$$

5. $f(t) = \sin(\omega t)$

•
$$F(s) = \frac{\omega}{s^2 + \omega^2}$$

6. $f(t) = \cos(\omega t)$

•
$$F(s) = rac{s}{s^2 + \omega^2}$$

7. $f(t) = e^{at}$

•
$$F(s) = \frac{1}{s-a}$$

8. f(t) = t

•
$$F(s) = \frac{1}{s^2}$$

9. f(t) = u(t - a)

•
$$F(s) = \frac{e^{-as}}{s}$$

10. $f(t)=t^n$

•
$$F(s) = \frac{n!}{s^{n+1}}$$

11. $f(t) = \sinh(at)$

•
$$F(s) = \frac{a}{s^2 - a^2}$$

12. $f(t) = \cosh(at)$

•
$$F(s) = \frac{s}{s^2 - a^2}$$

13. $f(t)=t^ne^{at}$

•
$$F(s) = \frac{n!}{(s-a)^{n+1}}$$

14. $f(t) = t^n \sin(\omega t)$

•
$$F(s) = \frac{n!\omega}{(s^2+\omega^2)^{n+1}}$$

15. $f(t) = t^n \cos(\omega t)$

•
$$F(s) = \frac{n!s}{(s^2 + \omega^2)^{n+1}}$$

16. $f(t) = e^{-at}\sin(\omega t)$

•
$$F(s) = \frac{\omega}{(s+a)^2 + \omega^2}$$

17. $f(t) = e^{-at} \cos(\omega t)$

•
$$F(s) = \frac{s+a}{(s+a)^2 + \omega^2}$$

18. $f(t) = \frac{t^n}{n!}$

•
$$F(s) = \frac{1}{s^{n+1}}$$

19. $f(t) = e^{at}t^n\sin(\omega t)$

•
$$F(s)=rac{n!\omega}{(s-a)^2+\omega^2}$$

20. $f(t) = e^{at}t^n\cos(\omega t)$

•
$$F(s)=rac{n!(s-a)}{(s-a)^2+\omega^2}$$

Inverse Laplace Transforms

1.
$$F(s) = \frac{1}{s}$$

•
$$f(t) = 1$$

2.
$$F(s) = \frac{1}{s+a}$$

•
$$f(t) = e^{-at}$$

3.
$$F(s) = \frac{1}{s^2}$$

•
$$f(t) = t$$

4.
$$F(s) = 1$$

•
$$f(t) = \delta(t)$$

5.
$$F(s) = \frac{\omega}{s^2 + \omega^2}$$

•
$$f(t) = \sin(\omega t)$$

6.
$$F(s)=rac{s}{s^2+\omega^2}$$

•
$$f(t) = \cos(\omega t)$$

7.
$$F(s) = \frac{1}{s-a}$$

•
$$f(t) = e^{at}$$

8.
$$F(s)=rac{e^{-as}}{s}$$

•
$$f(t) = u(t-a)$$

9.
$$F(s) = \frac{1}{(s^2+a^2)^2}$$

•
$$f(t) = \frac{t \sin(at)}{a}$$

10.
$$F(s)=e^{as}$$

•
$$f(t) = \delta(t-a)$$

11.
$$F(s) = \frac{1 - e^{-as}}{s}$$

•
$$f(t) = u(t-a)$$

12.
$$F(s) = rac{2}{s^2+4}$$

•
$$f(t) = \sin(2t)$$

13.
$$F(s) = \frac{2s}{s^2+4}$$

•
$$f(t) = \cos(2t)$$

14.
$$F(s) = \frac{1}{(s+a)(s+b)}, a \neq b$$

$$ullet f(t) = rac{e^{-at}-e^{-bt}}{a-b}$$

15.
$$F(s) = \frac{s}{(s+a)^2}$$

•
$$f(t) = te^{-at}$$

16.
$$F(s) = \frac{s+a}{s^2-as}, a>0$$

•
$$f(t) = (1 - e^{-at})u(t)$$

17.
$$F(s) = \frac{2s}{s^2+1}$$

•
$$f(t) = 2\cos(t)$$

18.
$$F(s) = rac{s}{s^2 + 1}$$

•
$$f(t) = \sin(t)$$

19.
$$F(s) = rac{1}{(s^2 + a^2)^2}$$

•
$$f(t) = \frac{t \sin(at)}{a}$$

20.
$$F(s) = \frac{s^2 + 2s + 2}{s^3 + 3s^2 + 3s + 1}$$

•
$$f(t) = e^{-t} + t^2 e^{-t}$$