Laplace Transforms % 1. Constant Function syms t s; f1 = 1; F1= laplace(f1, t, s); pretty(F1) % 2. Exponential Decay syms t a s; f2 = exp(-a*t); F2 = laplace(f2, t, s); pretty(F2) % 3. Unit Step Function syms t s; f3 = heaviside(t); F3= laplace(f3, t, s); pretty(F3) % 4. Impulse Function syms t s; f4= dirac(t); F4 = laplace(f4, t, s); pretty(F4) % 5. Sinusoidal Function syms t omega s; f5 = sin(omega*t); F5 = laplace(f5, t, s); pretty(F5) % 6. Cosinusoidal Function syms t omega s; f6 = cos(omega*t); F6 = laplace(f6, t, s); pretty(F6) % 7. Exponential Growth syms t a s; f7 = exp(a*t); F7 = laplace(f7, t, s); pretty(F7) % 8. Ramp Function syms t s; f8 = t; F8 = laplace(f8, t, s); pretty(F8) % 9. Heaviside Function Shifted syms t a s; f9 = heaviside(t - a); F9 = laplace(f9, t, s); pretty(F9) % 10. Polynomial Function syms t s n; f10 = t^n; F10 = laplace(f10, t, s); pretty(F10) ------------------------------------------------------------- Inverse Laplace Transforms syms t s a omega n; % 1. Inverse Laplace of 1/s syms t s; F1 = 1/s; f1= ilaplace(F1, s, t); pretty(f1) % 2. Inverse Laplace of 1/(s + a) syms t s a; F2 = 1/(s + a); f2 = ilaplace(F2, s, t); pretty(f2) % 3. Inverse Laplace of 1/s^2 syms t s; F3 = 1/s^2; f3 = ilaplace(F3, s, t); pretty(f3) % 4. Inverse Laplace of 1 syms t s; F4 = 1; f4 = ilaplace(F4, s, t); pretty(f4) % 5. Inverse Laplace of omega/(s^2 + omega^2) syms t s omega; F5 = omega/(s^2 + omega^2); f5 = ilaplace(F5, s, t); pretty(f5) % 6. Inverse Laplace of s/(s^2 + omega^2) syms t s omega; F6 = s/(s^2 + omega^2); f6 = ilaplace(F6, s, t); pretty(f6) % 7. Inverse Laplace of 1/(s - a) syms t s a; F7 = 1/(s - a); f7 = ilaplace(F7, s, t); pretty(f7) % 8. Inverse Laplace of e^(-as)/s syms t s a; F8 = exp(-a*s)/s; f8 = ilaplace(F8, s, t); pretty(f8) % 9. Inverse Laplace of 1/(s^2 + a^2)^2 syms t s a; F9 = 1/((s^2 + a^2)^2); f9= ilaplace(F9, s, t); pretty(f9) % 10. Inverse Laplace of e^(as) syms t s a; F10 = exp(a*s); f10 = ilaplace(F10, s, t); pretty(f10)