EE 204 Signals and Systems Laboratory 9

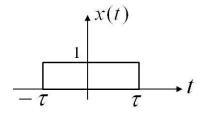
I. PREPARATION

1) Background Information:

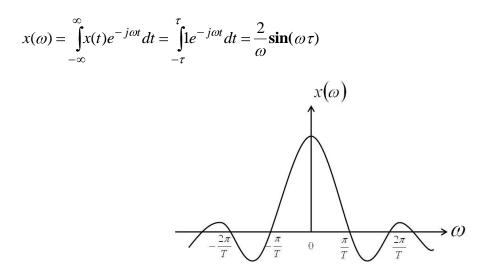
x(t) is an aperiodic signal.

** Fourier transform of
$$x(t) \rightarrow x(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (1)
** Inverse Fourier transform $\rightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\omega)e^{j\omega t} d\omega$ (2)
Duality Property:
 $f(t) \leftarrow FT \rightarrow g(\omega)$
 $g(t) \leftarrow FT \rightarrow 2\pi * f(-\omega)$

Consider the x(t) signal given below;



Let apply Equation (1) to this x(t) signal:



 $x(\omega)$ is the Fourier transform of x(t) and it is plotted above. Let assume that $\tau = 1$, so the final expression of $x(\omega)$ becomes a sinc function:

$$x(\omega) = \frac{2\sin(\omega)}{\omega} = 2\operatorname{sinc}(\omega)$$

Therefore, the Fourier transform of a rectangle function is a sinc function.

II. EXPERIMENTAL WORK

- 1) Plot x(t) and $x(\omega)$ signals using Matlab. Observe what happens when $\tau \to \infty$ and $\tau \to 0$. Plot graphs of x(t) and $x(\omega)$ for $\tau \to \infty$ and $\tau \to 0$ cases.
- 2) Using duality find Fourier transform of $x(t) = \frac{1}{\pi t} \sin(t\tau)$. Plot x(t) and $x(\omega)$ for large and small values of τ .

Hint:

Since
$$x(t) = \frac{1}{\pi t} \sin(t\tau)$$
, by using duality $x(\omega)$ can be found as;

$$x(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{j\omega t} dt$$